본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Building and environment v.114, 2017년, pp.129 - 139   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Hygric characterization of wood fiber insulation under uncertainty with dynamic measurements and Markov Chain Monte-Carlo algorithm

Rouchier, Simon (LOCIE, CNRS-UMR5271, Université ); Busser, Thomas ( de Savoie ); Pailha, Mickaë ( Campus Scientifique, Savoie Technolac, 73376 Le Bourget-du-Lac Cedex, France ); l ( LOCIE, CNRS-UMR5271, Université ); Piot, Amandine ( de Savoie ); Woloszyn, Monika ( Campus Scientifique, Savoie Technolac, 73376 Le Bourget-du-Lac Cedex, France );
  • 초록  

    Abstract The present work is the hygric characterization of wood fibre insulation boards, using dynamic measurements of relative humidity and sample weight, analyzed in the frame of Bayesian inference for parameter identification under uncertainty. It is an attempt at identifying detailed profiles of moisture-dependent properties, and thus a relatively high number of parameters. Because of this ambition, some caution should be exercised once the outcome of the inversion algorithm is available: in addition to confidence intervals of parameters provided by the Bayesian framework, a simplified form of identifiability analysis is performed by analysing a posteriori parameter correlations and likelihood-based confidence intervals. The characterization methodology does not require for the model structure to have a differentiable analytical formulation, or for material samples to reach mass equilibrium between each RH step of the experimental process. Two separate experimental designs were used for material characterization and for validation, respectively. Results show a clear relation between available information (experimental data) and inference (confidence intervals of parameters). A single relative humidity step is not informative enough for a precise inference of moisture-dependent properties such as vapour permeability and moisture capacity. A two-step experiment however holds enough information to significantly reduce parameter uncertainty. Highlights Bayesian inference is applied to the hygric characterization of wood fibre under uncertainty. The use of dynamic measurements allows a fast and joint estimation of moisture permeability and sorption isotherm. The sorption isotherm matches with conventional characterization methods. A simplified identifiability study evaluates the reliability of results. A validation step confirms that results could be extrapolated to different conditions.


  • 주제어

    HAM .   Characterization .   MCMC .   Identifiability.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기