본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Building and environment v.114, 2017년, pp.429 - 444   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Urban residential energy consumption modeling in the Integrated Urban Metabolism Analysis Tool (IUMAT)

Mostafavi, Nariman (Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Curtis 251, Philadelphia, PA 19104, USA ); Farzinmoghadam, Mohamad ( Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA ); Hoque, Simi ( Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Curtis 251, Philadelphia, PA 19104, USA );
  • 초록  

    Abstract The Integrated Urban Metabolism Analysis Tool (IUMAT) is a system-based computational platform for quantifying the environmental impacts of urban development scenarios. IUMAT's EWM module is a bottom-up approach to generate energy, water, and material resources demand profiles based on building and neighborhood characteristics. This paper presents the EWM approach using national and regional datasets to identify the relationships between environmental impacts and resource use determinants within a simulation platform for urban metabolism analysis. We focus on residential energy consumption, which serves as a template for how the EWM module will be used to simulate commercial and industrial demand profiles. Quantile regression methods are applied to Residential Energy Consumption Survey (RECS) 2009 data to describe the impacts of physical and socio-economic parameters on end use residential energy profiles and create a modeling framework for residential energy prediction. Also, a method for quantifying CO 2 emissions and water consumption associated with energy production is outlined. Highlights Quantile regression is used to predict residential energy use categories. A method for calculating GHG emissions for residential energy use is introduced. The use of actual datasets for energy modeling and policy making is evaluated. Prediction power for HVAC energy use is scale-dependent, unlike other categories. Pricing and retrofit strategies do not impact energy savings in some categories.


  • 주제어

    Urban metabolism .   Urban energy modeling .   Energy consumption .   Residential energy use .   IUMAT .   Quantile regression.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기