본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Sustainable cities and society v.29, 2017년, pp.107 - 117   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Improving sustainable office building operation by using historical data and linear models to predict energy usage

Safa, Majeed (Department of Agricultural Management and Property Studies, Lincoln University, New Zealand ) ; Safa, Mahdi (College of Business, Lamar University, USA ) ; Allen, Jeremy (Energy Solution Providers Ltd, Auckland, New Zealand ) ; Shahi, Arash (Department of Civil Engineering and Mineral, University of Toronto, Canada ) ; Haas, Carl T. (Department of Civil and Environmental Engineering, University of Waterloo, Canada ) ;
  • 초록  

    Abstract Offices and retail outlets represent the most intensive energy consumers in the non-residential building sector and have been estimated to account for more than 50% of a building’s energy usage. Accurate predictions of office building energy usage can provide potential energy savings and significantly enhance the efficient energy management of office buildings. This paper proposes a method that applies multiple linear regression (MLR) and artificial neural network (ANN) models to predict energy consumption based on weather conditions and occupancy; thus, enabling a comparison of the use of these two types of modelling methods. In this study, four models of office sites at research institutions in different New Zealand regions were developed to investigate the ability of simple models to reduce margins of error in energy auditing projects. The models were developed based on the monthly average outside temperature and the number of full-time employees (FTEs). A comparison of the actual and predicted energy usage revealed that the models can predict energy usage within an acceptable error range. The results also demonstrated that each building should be investigated as an individual unit. Highlights The paper proposes a method that applies multiple linear regression (MLR) and artificial neural network (ANN) models to predict energy usage based on weather conditions and occupancy; thus enabling a comparison of the use of these two types of modelling methods. The models were developed based on the monthly outside temperatures and the number of full-time employees (FTEs). A comparison of the actual and predicted energy consumption revealed that the models can predict energy usage within an acceptable error range. The results also demonstrated that each building should be investigated as an individual unit.


  • 주제어

    Energy modelling .   Energy auditing .   Office buildings .   Energy saving .   Artificial neural network .   Linear regression model.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기