본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neurocomputing v.229, 2017년, pp.23 - 33   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Abdominal adipose tissues extraction using multi-scale deep neural network

Jiang, Fei (Shanghai Jiao Tong University, China ); Li, Huating ( Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China ); Hou, Xuhong ( Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China ); Sheng, Bin ( Shanghai Jiao Tong University, China ); Shen, Ruimin ( Shanghai Jiao Tong University, China ); Liu, Xiao-Yang ( Shanghai Jiao Tong University, China ); Jia, Weiping ( Florida International University, USA ); Li, Ping ( The Hong Kong Institute of Education, China ); Fang, Ruogu ( Florida International University, USA );
  • 초록  

    Abstract Segmentation of abdominal adipose tissues (AAT) into subcutaneous adipose tissues (SAT) and visceral adipose tissues (VAT) is of crucial interest for managing the obesity. Previous methods with raw or hand-crafted features rarely work well on large-scale subject cohorts, because of the inhomogeneous image intensities, artifacts and the diverse distributions of VAT. In this paper, we propose a novel two-stage coarse-to-fine algorithm for AAT segmentation. In the first stage, we formulate the AAT segmentation task as a pixel-wise classification problem. First, three types of features, intensity, spatial and contextual features, are extracted. Second, a new type of deep neural network, named multi-scale deep neural network (MSDNN), is provided to extract high-level features. In the second stage, to improve the segmentation accuracy, we refine coarse segmentation results by determining the internal boundaries of SAT based on coarse segmentation results and the continuous of SAT internal boundaries. Finally, we demonstrate the efficacy of our algorithm for both 2D and 3D cases on a wide population range. Compared with other algorithms, our method is not only more suitable for large-scale dataset, but also achieves better segmentation results. Furthermore, our system takes about 2s to segment an abdominal image, which implies potential clinical applications.


  • 주제어

    Abdominal adipose tissues segmentation .   Coarse-to-fine segmentation .   Multi-scale deep neural network .   Internal boundary.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기