본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neurocomputing v.229, 2017년, pp.100 - 108   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A computationally efficient 3D/2D registration method based on image gradient direction probability density function

Ghafurian, Soheil (Department of Industrial and Systems Engineering, Rutgers University, USA ) ; Hacihaliloglu, Ilker (Department of Biomedical Engineering, Rutgers University, USA ) ; Metaxas, Dimitris N. (Department of Computer Science, Rutgers University, USA ) ; Tan, Virak (Department of Orthopaedics, New Jersey Medical School, Rutgers University, USA ) ; Li, Kang (Department of Industrial and Systems Engineering, Rutgers University, USA ) ;
  • 초록  

    Abstract Three-dimensional (3D) to two-dimensional (2D) registration is an essential problem in many medical applications. This problem aims at finding the rigid transformation parameters to match the projected image of a 3D model to the real one to estimate the 3D pose of the anatomical model. This class of image registration is computationally intensive due to the large number of solution assessments necessary to search the complex solution space. Moreover, the convergence of the solution process is contingent on a manual initialization of the solution close to the optimal solution. In this paper, we address both of these challenges by introducing a registration method which is significantly faster and less sensitive to initialization than existing methods. The method explores the properties of image gradient probability density function for registration and uses a weighted histogram of image gradient directions (WHGD) as the image feature. This simplifies the computation by searching the parameter space (rotations and translations) sequentially rather than simultaneously. Our experiments demonstrated that the proposed method was able to achieve sub-millimeter and sub-degree accuracy with 5% of the solution assessments needed by an established existing method. The accuracy was not sensitive to the initial solution as long as it was within 90° and 30mm of the true registration, which is a substantial improvement over the existing methods.


  • 주제어

    Image-guided evaluation .   Histogram of gradient directions .   Feature-based registration .   3D/2D registration.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기