본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Ecological Indicators v.75, 2017년, pp.82 - 94   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Simulation of terrestrial carbon equilibrium state by using a detachable carbon cycle scheme

Wang, Zhaoqi (Department of Ecology, School of Life Science, Nanjing University, Nanjing, PR China ) ; Yang, Yue (Department of Ecology, School of Life Science, Nanjing University, Nanjing, PR China ) ; Li, Jianlong (Department of Ecology, School of Life Science, Nanjing University, Nanjing, PR China ) ; Zhang, Chaobin (Department of Ecology, School of Life Science, Nanjing University, Nanjing, PR China ) ; Chen, Yizhao (Department of Ecology, School of Life Science, Nanjing University, Nanjing, PR China ) ; Wang, Ke (Hutai Middle School, Xining, PR China ) ; Odeh, Inakwu (Department of Environmental Sciences, Faculty of Agricultural and Environment, The University of Sydney, Sydney, Australia ) ; Qi, Jiaguo (The Center for Global Change & Earth Observations, Michigan State University, East Lansing, USA ) ;
  • 초록  

    Abstract Determining the equilibrium state of terrestrial carbon is a prerequisite for scientific analysis on the carbon cycle. However, the mechanism through which the carbon cycle reaches the equilibrium state remains unclear. Moreover, the carbon cycle in most of the short–term field experiments rarely reaches the equilibrium state. In this study, a detachable carbon cycle (DCC) model was proposed to simulate the equilibrium state of each carbon pool. The model was established based on a pool–and–flux scheme and contained 14 carbon pools, or carbon flow processes, each process could be detached from the main model and evaluated as an independent component. The environmental scalar algorithms of the Integrated Terrestrial Ecosystem Carbon budget model (InTEC) and Community Atmosphere Biosphere Land Exchange (CABLE) were incorporated in the DCC model. Four situations were compared using the two environmental scalar algorithms and model structure (9 vs. 14 carbon pools). Furthermore, the size and turnover time of each carbon pool were analyzed at the equilibrium state. A sensitivity analysis was then conducted to investigate the responses of carbon density and equilibrium time to 12 key parameters of the model. Results indicated that the combination of the CABLE environmental scalar algorithm and 14 pools exhibited improved performance on carbon storage simulation than that of the other combinations, and the effect of the environmental scalar algorithm was considerably larger than that of the carbon pool number. Sensitivity analysis indicated that the carbon density of grassland and cropland was more vulnerable and sensitive to key parameters of the model than that of the other biomes. This study elucidates influencing factors and underlying control mechanisms in the carbon accumulation, and provides a framework for quantitative analysis of each component of the carbon cycle. Highlights Each of the carbon pool or carbon flow process was detached from the main model as independent component for study. NPP and ξ are the most important parameters in the DCC model. The carbon density of GRA and CRO is more sensitive to key parameters of the model than that of the other biomes.


  • 주제어

    Carbon pool .   Turnover time .   Detachable carbon cycle model .   Carbon storage.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기