본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Reliability engineering & system safety v.160, 2017년, pp.114 - 121   SCI SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter

Wang, Guodong (Department of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China ); He, Zhen ( College of Management and Economics, Tianjin University, Tianjin 300072, China ); Xue, Li ( Department of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China ); Cui, Qingan ( School of Management Engineering, Zhengzhou University, Zhengzhou 450001, China ); Lv, Shanshan ( College of Management and Economics, Tianjin University, Tianjin 300072, China ); Zhou, Panpan ( College of Management and Economics, Tianjin University, Tianjin 300072, China );
  • 초록  

    Abstract Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper proposes a bootstrap-based methodology for identifying significant factors when both location and scale parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1) the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at 63.21th percentile. Highlights Product reliability is improved by design of experiments under both scale and location parameters of smallest extreme value distribution vary with experimental factors. A bootstrap-based methodology is proposed to identify important factors which affect 100 p th lifetime percentile significantly. Bootstrapping confidence intervals associating experimental factors are obtained by using three bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping). The important factors identified by different bootstrap methods are different. The number of factors affecting 10th percentile significantly is less than the number of important factors identified at 63.21th percentile.


  • 주제어

    Design of experiments .   Censored data .   Percentile .   Weibull distribution.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기