본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Materials & Design v.117, 2017년, pp.157 - 167   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders

Zheng, Liang (Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, P.O. Box 81-1, Beijing 100095, China ); Lee, T.L. (ISIS Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK ); Liu, Na (Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, P.O. Box 81-1, Beijing 100095, China ); Li, Zhou (Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, P.O. Box 81-1, Beijing 100095, China ); Zhang, Guoqing (Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, P.O. Box 81-1, Beijing 100095, China ); Mi, J. (School of Engineering & Computer Science, University of Hull, Cottingham Road, Hull HU6 7RX, UK ); Grant, P.S. (Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK );
  • 초록  

    Abstract The rapid microstructural evolution of gas atomised Ni superalloy powder compacts over timescales of a few seconds was studied using a Gleeble 3500 thermomechanical simulator, finite element based numerical model and electron microscopy. The study found that the microstructural changes were governed by the characteristic temperatures of the alloy. At a temperature below the γ' solvus, the powders maintained dendritic structures. Above the γ' solvus temperature but in the solid-state, rapid grain spheroidisation and coarsening occurred, although the fine-scale microstructures were largely retained. Once the incipient melting temperature of the alloy was exceeded, microstructural change was rapid, and when the temperature was increased into the solid+liquid state, the powder compact partially melted and then re-solidified with no trace of the original structures, despite the fast timescales. The study reveals the relationship between short, severe thermal excursions and microstructural evolution in powder processed components, and gives guidance on the upper limit of temperature and time for powder-based processes if desirable fine-scale features of powders are to be preserved. Highlights Rapid microstructural changes of Ni powders were studied by physical and numerical simulations, and electron microscopy. γ' solvus temperature and incipient melting temperature were critical in controlling the microstructures of the Ni powders. Dendritic structures retained near γ' solvus temperature, but coarsened dramatically near incipient melting temperature. Powders melted and agglomerated near 50% liquid, re-solidified with coarser dendritic structures and micro-segregation. The findings provide general guidance for the temperature limits and time for retaining the fine microstructure of powders. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Ni superalloys .   Rapid heating and cooling .   Powder consolidation .   Electron microscopy .   Gleeble thermomechanical simulator .   Finite element modelling.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기