본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Applied energy v.189, 2017년, pp.31 - 43   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A thermophysical battery for storage-based climate control

Narayanan, Shankar (Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); Kim, Hyunho ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); Umans, Ari ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); Yang, Sungwoo ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); Li, Xiansen ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); Schiffres, Scott N. ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); Rao, Sameer R. ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ); McKay, Ian S. ( Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave ); Rios Perez, Carlos A. ( ); Hidrovo, Carlos H. ( ); Wang, Evelyn N. ( );
  • 초록  

    Abstract Climate control applications in the form of heating and cooling account for a significant portion of energy consumption in buildings and transportation. Consequently, improved efficiency of climate control systems can significantly reduce the energy consumption and greenhouse gas emissions. In particular, by leveraging intermittent or continuous sources of waste heat and solar energy, thermally-driven energy storage systems for climate control can play a crucial role. We demonstrate the concept of a thermophysical battery, which operates by storing thermal energy and subsequently releasing it to provide heating and cooling on demand. Taking advantage of the adsorption-desorption and evaporation-condensation mechanisms, the thermophysical battery can be a high-power density and rechargeable energy storage system. We investigated the thermophysical battery in detail to identify critical parameters governing its overall performance. A detailed computational analysis was used to predict its cyclic performance when exposed to different operating conditions and thermodynamic cycles. In addition, an experimental test bed was constructed using a contemporary adsorptive material, NaX-zeolite, to demonstrate this concept and deliver average heating and cooling powers of 900W and 650W, respectively. The maximum power densities and specific powers observed were 103W/l and 65W/kg for heating, and 78W/l and 49W/kg for cooling, respectively, making the thermophysical battery competitive with the state-of-the-art climate control systems that provide relatively lower power densities. Additionally, with further opportunities for development and innovation, especially in synthesizing novel adsorptive materials, the thermophysical battery can achieve significantly higher power densities. With its ability to function using thermal energy input while being compact and lightweight, the thermophysical battery offers an option to address the energy challenges associated with the rising demand for climate control. Highlights The concept of a thermophysical battery for storing thermal energy is demonstrated. The battery provides heating and cooling for stationary and mobile applications. Energy storage mechanisms: adsorption-desorption and evaporation-condensation. Max. heating: 103W/l and 65W/kg; Max. Cooling: 78W/l and 49W/kg. Novel adsorbents further enhance performance for a compact and lightweight system. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Thermal energy storage .   Climate control .   HVAC .   Adsorption .   Air conditioning.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기