본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Applied energy v.189, 2017년, pp.555 - 567   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses

Kshirsagar, Charudatta M. (Corresponding author. ); Anand, Ramanathan ( );
  • 초록  

    Abstract This experimental work presents a parametric investigation of Calophyllum inophyllum methyl ester (CIME)-diesel engine operations and artificial neural network (ANN) applied forecast of the engine out responses. The engine tests were performed for five test fuels from idle to full load conditions with the stipulated increment of 25% of the load for every run at three selected injection timings (21°, 23° and 25° CA bTDC) for 220bar, 260bar and 300bar injection pressures. The experimental outcomes indicated that twenty percentage blend of the biodiesel in neat diesel (CIME20) showed the highest brake thermal efficiency (BTE) among the CIME-diesel operations for 300bar injection pressure at 23° CA bTDC injection timing whereas BTE for the test fuels reduced at advanced and retarded injection timings at full load. CO, UBHC, dry soot and engine out O 2 emissions were reduced at the advanced injection timing whereas NO and CO 2 emissions increased. Using steady state experimental data, separate ANN models were proposed to forecast performance (BTE, BSEC, EGT) and emission (CO, CO 2 , UBHC, NO, dry soot and engine out O 2 ) parameters with percentage load, blend percentage, injection pressure and injection timing as selected input control variables. The proposed ANN models indicated an impressive agreement as correlation coefficient (R) and mean absolute percentage error (MAPE) values perceived in the range of 0.99879–0.99993 and 0.87–4.62% respectively with remarkably lower root mean squared errors. Besides, lower values of mean squared relative error (MSRE) and noteworthy Nash-Sutcliffe coefficient of Efficiency (NSE) indices reasonably demonstrated robustness of the proposed models. Moreover, observed values of forecasting uncertainty Theil U2 indicated more effective outcomes for a credible model forecasting ability. Highlights Reduction in BSEC, CO, UBHC, soot and engine out O 2 at high fuel injection pressure. ANN modelling of BTE, BSEC, EGT, CO, CO 2 , UBHC, NO, dry soot and engine out O 2 . Use of MSE, RMSE, R, R 2 , MAPE, MSRE, NSE and THEIL U2 metrics as evaluation criteria. The proposed ANN models map the engine out responses with better accuracy.


  • 주제어

    Biodiesel-diesel blends .   Diesel engine .   Performance .   Emission .   Parametric study.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기