본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International journal of refrigeration = Revbue internationale du froid v.74, 2017년, pp.151 - 164   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Identification de la brUlure de congElation sur la surface du saumon congelE en utilisant l'imagerie hyperspectrale et la vision par ordinateur combinEe avec l'algorithme d'apprentissage automatique
Identification of freezer burn on frozen salmon surface using hyperspectral imaging and computer vision combined with machine learning algorithm

Xu, Jun-Li (Corresponding author. Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. Fax: +353 1 7167493. ) ; Sun, Da-Wen ;
  • 초록  

    Abstract This study explored the potential of computer vision system (CVS) and hyperspectral imaging (HSI) technique covering spectral range of 900–1700 nm for identifying freezer burnt salmon fillets after frozen storage. Local binary pattern (LBP) descriptor was applied for the RGB image classification. Reflectance spectra were obtained from various positions surface and pretreated using the standard normal variate (SNV) transformation. TreeBagger classifier was used to build classification models for recognition and authentication of the freezer burnt flesh. The results suggested that hyperspectral discrimination performed much better than CVS with the correct classification rate (CCR) of 0.905 in validation and CCR of 0.945 in cross-validation. The effective wavelengths were selected based upon the feature importance in the TreeBagger model and the corresponding optimized model yielded CCR of 0.914 in validation and 0.978 in cross-validation. Overall, the outcome suggested the capability of HSI for rapid categorization of damaged regions on frozen salmon. Highlights HSI and CVS were used to identify freezer burn in salmon fillets. TreeBagger classifier was applied to build classification models. HSI presented better classification performance than CVS. Simplified models were built with good results presented. The visualization of prediction map in salmon fillets was obtained.


  • 주제어

    Atlantic salmon .   Hyperspectral imaging .   Computer vision .   TreeBagger classifier .   Machine learning .   Saumon atlantique .   Imagerie hyperspectrale .   Vision par ordinateur .   Classificateur TreeBagger .   Apprentissage automatique.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기