본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neurocomputing v.232, 2017년, pp.3 - 15   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Clustering techniques for Fuzzy Cognitive Map design for time series modeling

Homenda, W. Jastrzebska, A.
  • 초록  

    This study presents an approach to time series modeling with Fuzzy Cognitive Maps. In the paper we focus on initial modeling phase: map nodes selection. The research objective was to introduce algorithmic means to evaluate Fuzzy Cognitive Map design before training phase. We posed a hypothesis that application of cluster validity indexes could serve us in this endeavor. In order to validate the proposed approach we have conducted a suite of experiments on various time series, both synthetic and real-world. Five cluster validity indexes turned out to be especially valuable in our study. Results show that Fuzzy Cognitive Maps designed using one of the five selected indexes have superior quality. First, they are easy to interpret, because map nodes are related with the underlying data points. Second, after we train such maps, it turns out that the numerical quality of their predictions outrivals maps with other designs.


  • 주제어

    Fuzzy Cognitive Maps .   Fuzzy clustering .   Time series.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기