본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neurocomputing v.232, 2017년, pp.34 - 51   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Continuously self-adjusting fuzzy cognitive map with semi-autonomous concepts

Stula, M. Maras, J. Mladenovic, S.
  • 초록  

    Fuzzy cognitive maps (FCMs) are distributed computation systems used for qualitative modelling and behaviour simulation. Constructing an FCM is a time-consuming process and the quality of the resulting map is difficult to assess. In this paper we propose an extension to FCMs that self-adjusts the FCM based on real data from the modelled system. The self-adjusting FCM (SAFCM) changes the cause-effect relationships and concept inferences for each system data point with the goal of reducing the error between real data and values produced by the map. In this way, the burden of map construction imposed on the map builder is reduced and the initially constructed map can be evaluated by examining the degree of change caused by the self-adjustment. We tested the SAFCM on two case studies where we measured the degree of change to the initial map structure set up by an expert. The experiments showed that the self-adjusted maps produced results that were closer to real data than the maps that were initially set up by the expert. We also compared the SAFCM to a basic FCM and to an FCM that used a standard learning algorithm. The results showed that our algorithm had higher accuracy.


  • 주제어

    Self-adjusting fuzzy cognitive map .   Multi-agent systems.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기