본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neurocomputing v.232, 2017년, pp.52 - 57   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes

Salmeron, J.L. Ruiz-Celma, A. Mena, A.
  • 초록  

    In this paper, we propose a Fuzzy Cognitive Map (FCM) learning approach with a multi-local search in balanced memetic algorithms for forecasting industrial drying processes. The first contribution of this paper is to propose a FCM model by an Evolutionary Algorithm (EA), but the resulted FCM model is improved by a multi-local and balanced local search algorithm. Memetic algorithms can be tuned with different local search strategies (CMA-ES, SW, SSW and Simplex) and the balance of the effort between global and local search. To do this, we applied the proposed approach to the forecasting of moisture loss in industrial drying process. The thermal drying process is a relevant one used in many industrial processes such as food industry, biofuels production, detergents and dyes in powder production, pharmaceutical industry, reprography applications, textile industries, and others. This research also shows that exploration of the search space is more relevant than finding local optima in the FCM models tested.


  • 주제어

    Fuzzy .   Cognitive MapsMachine learning .   Industrial drying .   Memetic algorithm.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기