본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Neurocomputing v.232, 2017년, pp.113 - 121   SCIE SCOPUS
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks

Papageorgiou, E.I. Poczeta, K.
  • 초록  

    This paper proposes a two-stage prediction model, for multivariate time series prediction based on the efficient capabilities of evolutionary fuzzy cognitive maps (FCMs) enhanced by structure optimization algorithms and artificial neural networks (ANNs). In the first-stage, an evolutionary FCM is constructed automatically from historical time series data using the previously proposed structure optimization genetic algorithm, while in the second stage, the produced FCM defines the inputs in an ANN which next is trained by the back propagation method with momentum and Levenberg-Marquardt algorithm on the basis of available data. The structure optimization genetic algorithm for automatic construction of FCM is implemented for modeling complexity based on historical time series data, selecting the most important nodes (attributes) and interconnections among them thus providing a less complex and efficient FCM-based model. This model is used next as input in an ANN. ANNs are used at the final process for making time series prediction considering as inputs the concepts defined by the produced FCM. The previously proposed structure optimization genetic algorithm for FCM construction by historical data as well as the ANN have been already proved their efficacy on time series forecasting. The performance of the proposed approach is presented through the analysis of multivariate historical data of benchmark datasets for making predictions. The multivariate analysis of historical data is held for a large number of input variables, like season, month, day or week, holiday, mean and high temperature, etc. The whole approach was implemented in an intelligent software tool initially deployed for FCM prediction. Through the experimental analysis, the usefulness of the new two-stage approach in time series prediction is demonstrated, by calculating seven prediction performance indicators which are well known from the literature.


  • 주제어

    Fuzzy cognitive map .   Artificial neural network .   Forecasting .   Time series prediction .   Real coded genetic algorithm.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기