본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Improving RGBD Saliency Detection Using Progressive Region Classification and Saliency Fusion

Du, Huan ; Liu, Zhi ; Song, Hangke ; Mei, Lin ; Xu, Zheng ;
  • 초록  

    This paper proposes an effective method to improve the saliency detection performance of existing RGBD (RGB image with Depth map) saliency models. First, a progressive region classification method is proposed to collect training samples at coarse scale and fine scale via the inter-region hierarchical structure. A random forest regressor is then learned to predict the coarse saliency map and fine saliency map, respectively. Finally, the saliency maps at the two scales are integrated into the final saliency map under the constraint of the inter-region hierarchical structure. Experimental results on a RGBD image data set and a stereoscopic image data set with comparisons with the state-of-the-art saliency models validate that the proposed method consistently improves the saliency detection performance of various saliency models.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기