본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

An Efficient and Effective Automatic Recognition System for Online Recognition of Foreign Fibers in Cotton

Zhao, Xuehua (School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, China ); Li, Daoliang (College of Information and Electrical Engineering, China Agricultural University, Beijing, China ); Yang, Bo (Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China ); Liu, Shuangyin (School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China ); Pan, Zhifang (Information Technology Center, Wenzhou Medical University, Wenzhou, China ); Chen, Huiling ( );
  • 초록  

    Preventing foreign fibers from being mixed with cotton is essential for producing high-quality cotton textile products. It remains a challenging task to accurately distinguish foreign fibers from cotton. This paper proposes an efficient recognition system to accurately recognize foreign fibers mixed in cotton. The core component of the proposed system is an efficient classifier based on the kernel extreme learning machine (KELM). A two-step grid search strategy, which integrates a coarse search with a fine search, is adopted to train an optimal KELM recognition model. The resultant model is compared with the support vector machine and extreme learning machine on a real data set using tenfold cross-validation analysis. The experimental results show that the proposed recognition system can achieve classification accuracy as high as 93.57%, which is superior to the other two state-of-the-art systems. The results clearly confirm the superiority of the developed model in terms of classification accuracy. Promisingly, the proposed system can serve as a new candidate of powerful foreign fiber recognition systems with excellent performance.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기