본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Locality-Constrained Double Low-Rank Representation for Effective Face Hallucination

Gao, Guangwei ; Jing, Xiao-Yuan ; Huang, Pu ; Zhou, Quan ; Wu, Songsong ; Yue, Dong ;
  • 초록  

    Recently, position-patch-based face hallucination methods have received much attention, and obtained promising progresses due to their effectiveness and efficiency. A locality-constrained double low-rank representation (LCDLRR) method is proposed for effective face hallucination in this paper. LCDLRR attempts to directly use the image-matrix based regression model to compute the representation coefficients to maintain the essential structural information. On the other hand, LCDLRR imposes a low-rank constraint on the representation coefficients to adaptively select the training samples that belong to the same subspace as the inputs. Moreover, a locality constraint is also enforced to preserve the locality and the sparsity simultaneously. Compared with previous methods, our proposed LCDLRR considers locality manifold structure, cluster constraints, and structure error simultaneously. Extensive experimental results on standard face hallucination databases indicate that our proposed method outperforms some state-of-the-art algorithms in terms of both visual quantity and objective metrics.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기