본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on automation science and engineering v.14 no.1, 2017년, pp.358 - 369   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Learning Bayesian Network Structures to Augment Aircraft Diagnostic Reference Models

Mack, Daniel L. C. Biswas, Gautam Koutsoukos, Xenofon D. Mylaraswamy, Dinkar
  • 초록  

    Fault detection and isolation schemes are designed to detect the onset of adverse events during operations of complex systems, such as aircraft and industrial processes. The state-of-the-art fault diagnosis systems on aircraft combine an expert-created reference model of the associations between faults and symptoms, and a Naïve Bayes reasoner. For complex systems with many dependencies between components, the expert-generated reference models are often incomplete, which hinders timely and accurate fault diagnosis. Mining aircraft flight data is a promising approach to finding these missing relations between symptoms and data. However, mining algorithms generate a multitude of relations, and only a small subset of these relations may be useful for improving diagnoser performance. In this paper, we adopt a knowledge engineering approach that combines data mining methods with human expert input to update an existing reference model and improve the overall diagnostic performance. We discuss three case studies to demonstrate the effectiveness of this method.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기