본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on automation science and engineering v.14 no.1, 2017년, pp.160 - 170   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Layman Analytics System: A Cloud-Enabled System for Data Analytics Workflow Recommendation

Aye, Theint Theint Lee, Gary Kee Khoon Su, Yi Zhang, Tianyou Lee, Chonho Kasim, Henry Hoe, Ivan Lee, Francis Bu-Sung Hung, Terence Gih Guang
  • 초록  

    In today’s big data era, there is a tremendously huge amount of data available. Layman users lack not only the knowledge and experience in data analytics to make sense of these data but also the computational resources for executing the analytics. In this paper, we propose and develop a layman analytics system (LAS), which provides the layman users with a scalable and ready-to-use analytics tool to automatically generate analytics workflows for classification tasks. The LAS is designed to benefit from existing open-source data analytics tools using generic ontological modeling of analytics operators from these tools as well as adaptive constraint refinement for metadata learning. Moreover, the LAS can be deployed on both public and private clouds to cater to the need of scalable computing and easy maintenance. To demonstrate the performance of the LAS, we conducted experiments with 114 data sets obtained from the University of California Irvine Machine Learning Repository. The workflows generated by the LAS were benchmarked against the OpenML whereby each data set has a range of classification accuracy obtained using classifiers designed and fine-tuned by data experts. The comparisons showed that 87 out of 114 data sets have exceeded the 50th percentile of the benchmark data. Among these 87 data sets, the LAS outperforms the 90th percentile of the benchmarks on 49 data sets.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기