본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on automation science and engineering v.14 no.1, 2017년, pp.299 - 313   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Adaptive Fault-Tolerant Tracking Control for MIMO Discrete-Time Systems via Reinforcement Learning Algorithm With Less Learning Parameters

Liu, Lei ; Wang, Zhanshan ; Zhang, Huaguang ;
  • 초록  

    This paper is concerned with a reinforcement learning-based adaptive tracking control technique to tolerate faults for a class of unknown multiple-input multiple-output nonlinear discrete-time systems with less learning parameters. Not only abrupt faults are considered, but also incipient faults are taken into account. Based on the approximation ability of neural networks, action network and critic network are proposed to approximate the optimal signal and to generate the novel cost function, respectively. The remarkable feature of the proposed method is that it can reduce the cost in the procedure of tolerating fault and can decrease the number of learning parameters and thus reduce the computational burden. Stability analysis is given to ensure the uniform boundedness of adaptive control signals and tracking errors. Finally, three simulations are used to show the effectiveness of the present strategy.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기