본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE computational intelligence magazine v.12 no.1, 2017년, pp.42 - 55   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A Survey of Learning Classifier Systems in Games [Review Article]

Shafi, Kamran Abbass, Hussein A.
  • 초록  

    Games are becoming increasingly indispensable, not only for fun but also to support tasks that are more serious, such as education, strategic planning, and understanding of complex phenomena. Computational intelligence-based methods are contributing significantly to this development. Learning Classifier Systems (LCS) is a pioneering computational intelligence approach that combines machine learning methods with evolutionary computation, to learn problem solutions in the form of interpretable rules. These systems offer several advantages for game applications, including a powerful and flexible agent architecture built on a knowledge-based symbolic modeling engine; modeling flexibility that allows integrating domain knowledge and different machine learning mechanisms under a single computational framework; an ability to adapt to diverse game requirements; and an ability to learn and generate creative agent behaviors in real-time dynamic environments. We present a comprehensive and dedicated survey of LCS in computer games. The survey highlights the versatility and advantages of these systems by reviewing their application in a variety of games. The survey is organized according to a general game classification and provides an opportunity to bring this important research direction into the public eye. We discuss the strengths and weaknesses of the existing approaches and provide insights into important future research directions.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기