본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on pattern analysis and machine intelligence v.39 no.2, 2017년, pp.411 - 416   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

On the Equivalence of the LC-KSVD and the D-KSVD Algorithms

Kviatkovsky, Igor Gabel, Moshe Rivlin, Ehud Shimshoni, Ilan
  • 초록  

    Sparse and redundant representations, where signals are modeled as a combination of a few atoms from an overcomplete dictionary, is increasingly used in many image processing applications, such as denoising, super resolution, and classification. One common problem is learning a “good” dictionary for different tasks. In the classification task the aim is to learn a dictionary that also takes training labels into account, and indeed there exist several approaches to this problem. One well-known technique is D-KSVD, which jointly learns a dictionary and a linear classifier using the K-SVD algorithm. LC-KSVD is a recent variation intended to further improve on this idea by adding an explicit label consistency term to the optimization problem, so that different classes are represented by different dictionary atoms. In this work we prove that, under identical initialization conditions, LC-KSVD with uniform atom allocation is in fact a reformulation of D-KSVD: given the regularization parameters of LC-KSVD, we give a closed-form expression for the equivalent D-KSVD regularization parameter, assuming the LC-KSVD's initialization scheme is used. We confirm this by reproducing several of the original LC-KSVD experiments.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기