본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on pattern analysis and machine intelligence v.39 no.2, 2017년, pp.258 - 271   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Convexity Shape Prior for Binary Segmentation

Gorelick, Lena Veksler, Olga Boykov, Yuri Nieuwenhuis, Claudia
  • 초록  

    Convexity is a known important cue in human vision. We propose shape convexity as a new high-order regularization constraint for binary image segmentation. In the context of discrete optimization, object convexity is represented as a sum of three-clique potentials penalizing any $1$ - $0$ - $1$ configuration on all straight lines. We show that these non-submodular potentials can be efficiently optimized using an iterative trust region approach. At each iteration the energy is linearly approximated and globally optimized within a small trust region around the current solution. While the quadratic number of all three-cliques is prohibitively high, we design a dynamic programming technique for evaluating and approximating these cliques in linear time. We also derive a second order approximation model that is more accurate but computationally intensive. We discuss limitations of our local optimization and propose gradual non-submodularization scheme that alleviates some limitations. Our experiments demonstrate general usefulness of the proposed convexity shape prior on synthetic and real image segmentation examples. Unlike standard second-order length regularization, our convexity prior does not have shrinking bias, and is robust to changes in scale and parameter selection.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기