본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on pattern analysis and machine intelligence v.39 no.2, 2017년, pp.258 - 271   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Convexity Shape Prior for Binary Segmentation

Gorelick, Lena Veksler, Olga Boykov, Yuri Nieuwenhuis, Claudia
  • 초록  

    Convexity is a known important cue in human vision. We propose shape convexity as a new high-order regularization constraint for binary image segmentation. In the context of discrete optimization, object convexity is represented as a sum of three-clique potentials penalizing any $1$ - $0$ - $1$ configuration on all straight lines. We show that these non-submodular potentials can be efficiently optimized using an iterative trust region approach. At each iteration the energy is linearly approximated and globally optimized within a small trust region around the current solution. While the quadratic number of all three-cliques is prohibitively high, we design a dynamic programming technique for evaluating and approximating these cliques in linear time. We also derive a second order approximation model that is more accurate but computationally intensive. We discuss limitations of our local optimization and propose gradual non-submodularization scheme that alleviates some limitations. Our experiments demonstrate general usefulness of the proposed convexity shape prior on synthetic and real image segmentation examples. Unlike standard second-order length regularization, our convexity prior does not have shrinking bias, and is robust to changes in scale and parameter selection.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기