본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on bio-medical engineering v.64 no.2, 2017년, pp.295 - 301   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Apnea–Hypopnea Index Prediction Using Electrocardiogram Acquired During the Sleep-Onset Period

Jung, Da Woon (Interdisciplinary Program for Biomedical EngineeringSeoul National University Graduate School ); Hwang, Su Hwan ( Interdisciplinary Program for Biomedical EngineeringSeoul National University Graduate School ); Lee, Yu Jin ( Department of Psychiatry and Behavioral ScienceSeoul National University College of Medicine, and the Center for Sleep and ChronobiologySeoul National University Hospital ); Jeong, Do-Un ( Department of Psychiatry and Behavioral ScienceSeoul National University College of Medicine, and the Center for Sleep and ChronobiologySeoul National University Hospital ); Park, Kwang Suk ( );
  • 초록  

    The most widely used methods for predicting obstructive sleep apnea are based on clinical or anatomico-functional features. To improve exactitude in obstructive sleep apnea screening, this study aimed to devise a new predictor of apnea-hypopnea index. We hypothesized that less irregular respiration cycles would be observed in the patients with more severe obstructive sleep apnea during the sleep-onset period. From each of the 156 and 70 single-lead electrocardiograms collected from the internal polysomnographic database and from the Physionet Apnea-ECG database, respectively, the 150-s sleep-onset period was determined and the respiration cycles during this period were detected. Using the coefficient of variation of the respiration cycles, obtained from the internal dataset, as a predictor, the apnea-hypopnea index predictive model was developed through regression analyses and k-fold cross-validations. The apnea-hypopnea index predictability of the regression model was tested with the Physionet Apnea-ECG database. The regression model trained and validated from the 143 and 13 data, respectively, produced an absolute error (mean +/- SD) of 3.65 +/- 2.98 events/h and a Pearson's correlation coefficient of 0.97 (P


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기