본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on bio-medical engineering v.64 no.2, 2017년, pp.479 - 491   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Event Recognition for Contactless Activity Monitoring Using Phase-Modulated Continuous Wave Radar

Forouzanfar, Mohamad (Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada ) ; Mabrouk, Mohamed (Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada ) ; Rajan, Sreeraman (Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada ) ; Bolic, Miodrag (Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada ) ; Dajani, Hilmi R. (Sch. of Electr. Eng. & Comput. Sci., Univ. of Ottawa, Ottawa, ON, Canada ) ; Groza, Voicu Z. ;
  • 초록  

    Objectives: The use of remote sensing technologies such as radar is gaining popularity as a technique for contactless detection of physiological signals and analysis of human motion. This paper presents a methodology for classifying different events in a collection of phase modulated continuous wave radar returns. The primary application of interest is to monitor inmates where the presence of human vital signs amidst different, interferences needs to be identified. Methods: A comprehensive set of features is derived through time and frequency domain analyses of the radar returns. The Bhattacharyya distance is used to preselect the features with highest class separability as the possible candidate features for use in the classification process. The uncorrelated linear discriminant analysis is performed to decorrelate, denoise, and reduce the dimension of the candidate feature set. Linear and quadratic Bayesian classifiers are designed to distinguish breathing, different human motions, and nonhuman motions. The performance of these classifiers is evaluated on a pilot dataset of radar returns that contained different events including breathing, stopped breathing, simple human motions, and movement of fan and water. Results: Our proposed pattern classification system achieved accuracies of up to 93% in stationary subject detection, 90% in stop-breathing detection, and 86% in interference detection. Conclusion: Our proposed radar pattern recognition system was able to accurately distinguish the predefined events amidst interferences. Significance: Besides inmate monitoring and suicide attempt detection, this paper can be extended to other radar applications such as home-based monitoring of elderly people, apnea detection, and home occupancy detection.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기