본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on engineering management v.64 no.1, 2017년, pp.94 - 102   SCI SCIE SSCI
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Stochastic Single-Machine Scheduling With Learning Effect

Li, Haitao
  • 초록  

    Learning is ubiquitous in the modern scheduling environment. While the deterministic scheduling problems with known processing time and learning rate have been extensively studied, limited work exists to address the problems with both learning effect and uncertainty. In this paper, the single-machine scheduling problem with random nominal processing time and/or random job-based learning rate is studied, with the objective of minimizing the expected total flow time and expected makespan. Several optimal policies are obtained: first, the shortest expected processing time is optimal when only the nominal processing time is random; second, when the job-based learning rate is random, the optimal policy can be obtained by solving an assignment problem with random assignment cost. Computational study is conducted to offer insights on the behavior of optimal policy. The expected value of perfect information (EVPI) is calculated as the difference between the expected objective value found by the optimal policy, and the expected objective value with perfect information. EVPI offers a practical way for decision makers to quantify the incentive and benefit of reducing uncertainty for the addressed problem. The results show that the performance of optimal policy will be negatively impacted by high variation of random parameters.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기