본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on electron devices v.64 no.2, 2017년, pp.614 - 621   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Compact Model of HfOX-Based Electronic Synaptic Devices for Neuromorphic Computing

Huang, Peng (Institute of Microelectronics, Peking University, Beijing, China ); Zhu, Dongbin ( Institute of Microelectronics, Peking University, Beijing, China ); Chen, Sijie ( Institute of Microelectronics, Peking University, Beijing, China ); Zhou, Zheng ( Institute of Microelectronics, Peking University, Beijing, China ); Chen, Zhe ( Institute of Microelectronics, Tsinghua University, Beijing, China ); Gao, Bin ( Institute of Microelectronics, Peking University, Beijing, China ); Liu, Lifeng ( ); Liu, Xiaoyan ( ); Kang, Jinfeng ( );
  • 초록  

    HfO x -based resistive switching device has been explored as one of the promising candidates for the electronic synapses of neuromorphic computing systems due to its high performance, low cost, and compatibility with CMOS technology. To meet the codesign requirement of HfO x -based electronic synapses with CMOS neurons in the neuromorphic computing systems, a compact model that can capture the synaptic futures of HfO x -based resistive switching device is developed. The developed model can accurately describe the multilevel conductance transition behaviors during RESET process for depression learning as well as the binary stochastic transition behavior during SET process for potentiation learning. After the verification with experimental data, the model is used to simulate a winner-take-all neural network to classify patterns with unsupervised competitive learning algorithm. Simulation results imply that the average recognition accuracy would decrease with the increase of the resistance variation of low resistance state (LRS) due to the “trap” effect. Guided by the simulation, a synapse cell consisted of a HfO X -based device and a fixed resistor series connection is proposed to achieve almost 100% recognition accuracy even if the resistance variation of LRS is 50%.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기