본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE sensors journal v.17 no.4, 2017년, pp.1069 - 1083   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Non-Contact Capacitive-Coupling-Based and Magnetic-Field-Sensing-Assisted Technique for Monitoring Voltage of Overhead Power Transmission Lines

Zhu, Ke (Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong ); Lee, Wing Kin (Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong ); Pong, Philip W. T. ( );
  • 초록  

    Adopting non-contact capacitive coupling for voltage monitoring is promising as it avoids electrical connection with high-voltage transmission lines. However, coupled voltage transformation matrix to correlate voltage of overhead transmission lines and induction bars has not been achieved mathematically due to the lack of equivalent electric circuit model for analyzing the physical phenomenon. Moreover, exact spatial positions of overhead transmission lines are typically unknown and dynamic in practice. In this paper, a technique based on non-contact capacitive-coupling and assisted by magnetic-field sensing for monitoring voltage of overhead transmission lines was designed and implemented. The technique in this paper is demonstrated on a single-circuit transmission line as an example, while it is also applicable for multi-circuit transmission lines. The capacitive coupling between overhead transmission lines and induction bars were modeled as lumped capacitors, and then, the equivalent electric circuit model was established. The coupled voltage transformation matrix to correlate voltage of overhead transmission lines and induced voltage of induction bars mathematically was formed accordingly. This paper was also carried out to analyze the effect of ground wires, sensitivity of induction bars, the ability of high-frequency transient measurement, and the intrinsic capacitance of a measurement instrument. The exact spatial positions of overhead transmission lines were acquired by integrating magnetic-field sensing with the stochastic optimization algorithm. The methodology was verified by simulation on the 10-kV single-circuit three-phase overhead transmission lines taking non-ideality of signal measurement in account, and wavelet de-noising algorithm was supplemented to filter the interferences. A scaled testbed to experiment the technique was built to monitor 220 V overhead transmission lines in the lab, and also the typical waveform of a high-frequency switching surge (up to 1 kHz), which was generated by a programmable ac source. The reconstructed results match well with the actual values. This technique can largely improve transient-fault identification over traditional potential transformers by the virtue of the increased upper measurement limit and bandwidth through capacitive coupling. Moreover, it can be implemented with low-cost copper induction bars and compact magnetoresistive sensors, enabling large-scale application to realize sectional monitoring in the wide area.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기