본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Postsilicon Trace Signal Selection Using Machine Learning Techniques

Rahmani, Kamran ; Ray, Sandip ; Mishra, Prabhat ;
  • 초록  

    A key problem in postsilicon validation is to identify a small set of traceable signals that are effective for debug during silicon execution. Structural analysis used by traditional signal selection techniques leads to a poor restoration quality. In contrast, simulation-based selection techniques provide superior restorability but incur significant computation overhead. In this paper, we propose an efficient signal selection technique using machine learning to take advantage of simulation-based signal selection while significantly reducing the simulation overhead. The basic idea is to train a machine learning framework with a few simulation runs and utilize its effective prediction capability (instead of expensive simulation) to identify beneficial trace signals. Specifically, our approach uses: 1) bounded mock simulations to generate training vectors for the machine learning technique and 2) a compound search-space exploration approach to identify the most profitable signals. Experimental results indicate that our approach can improve restorability by up to 143.1% (29.2% on average) while maintaining or improving runtime compared with the state-of-the-art signal selection techniques.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기