본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society v.65 no.6, 2017년, pp.1511 - 1526   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Exact Tensor Completion Using t-SVD

Zhang, Zemin Aeron, Shuchin
  • 초록  

    In this paper, we focus on the problem of completion of multidimensional arrays (also referred to as tensors), in particular three-dimensional (3-D) arrays, from limited sampling. Our approach is based on a recently proposed tensor algebraic framework where 3-D tensors are treated as linear operators over the set of 2-D tensors. In this framework, one can obtain a factorization for 3-D data, referred to as the tensor singular value decomposition (t-SVD), which is similar to the SVD for matrices. t-SVD results in a notion of rank referred to as the tubal-rank. Using this approach we consider the problem of sampling and recovery of 3-D arrays with low tubal-rank. We show that by solving a convex optimization problem, which minimizes a convex surrogate to the tubal-rank, one can guarantee exact recovery with high probability as long as number of samples is of the order $O(rnk \log (nk))$ , given a tensor of size $n\times n\times k$ with tubal-rank $r$ . The conditions under which this result holds are similar to the incoherence conditions for low-rank matrix completion under random sampling. The difference is that we define incoherence under the algebraic setup of t-SVD, which is different from the standard matrix incoherence conditions. We also compare the numerical performance of the proposed algorithm with some state-of-the-art approaches on real-world datasets.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기