본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Water resources research v.52 no.9, 2016년, pp.7366 - 7381   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A numerical model for water and heat transport in freezing soils with nonequilibrium ice‐water interfaces

Peng, Zhenyang (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China ); Tian, Fuqiang (State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China ); Wu, Jingwei (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China ); Huang, Jiesheng (State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China ); Hu, Hongchang (Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina, USA ); Darnault, Christophe J. G. ( );
  • 초록  

    Abstract A one‐dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice‐water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice‐water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short‐term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm 3 cm −3 , showing improved accuracy over other models that assume equilibrium ice‐water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice‐water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice‐water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.


    Key Points: The Clapeyron equation does not sufficiently describe the dynamic ice‐water interfaces found in freezing soils A numerical model is developed by assuming ice‐water interfaces are not necessarily in thermal equilibrium


  • 주제어

    water .   freezing soil .   model .   nonequilibirum .   Clapeyron equation.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기