본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Water resources research v.52 no.9, 2016년, pp.7382 - 7407   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

The Henry problem: New semianalytical solution for velocity‐dependent dispersion

Fahs, Marwan (Department of Civil Engineering, Sharif University of Technology, Tehran, Iran ) ; Ataie‐Ashtiani, Behzad (Laboratoire d'Hydrologie et Geochemie de Strasbourg, University of Strasbourg/EOST/ENGEES, CNRS, 1 rue Blessig 67084 Strasbourg, France ) ; Younes, Anis (National Centre for Groundwater Research and Training and School of the Environment, Flinders University, Adelaide, South Australia, Australia ) ; Simmons, Craig T. (Laboratoire d'Hydrologie et Geochemie de Strasbourg, University of Strasbourg/EOST/ENGEES, CNRS, 1 rue Blessig 67084 Strasbourg, France ) ; Ackerer, Philippe ;
  • 초록  

    Abstract A new semianalytical solution is developed for the velocity‐dependent dispersion Henry problem using the Fourier‐Galerkin method (FG). The integral arising from the velocity‐dependent dispersion term is evaluated numerically using an accurate technique based on an adaptive scheme. Numerical integration and nonlinear dependence of the dispersion on the velocity render the semianalytical solution impractical. To alleviate this issue and to obtain the solution at affordable computational cost, a robust implementation for solving the nonlinear system arising from the FG method is developed. It allows for reducing the number of attempts of the iterative procedure and the computational cost by iteration. The accuracy of the semianalytical solution is assessed in terms of the truncation orders of the Fourier series. An appropriate algorithm based on the sensitivity of the solution to the number of Fourier modes is used to obtain the required truncation levels. The resulting Fourier series are used to analytically evaluate the position of the principal isochlors and metrics characterizing the saltwater wedge. They are also used to calculate longitudinal and transverse dispersive fluxes and to provide physical insight into the dispersion mechanisms within the mixing zone. The developed semianalytical solutions are compared against numerical solutions obtained using an in house code based on variant techniques for both space and time discretization. The comparison provides better confidence on the accuracy of both numerical and semianalytical results. It shows that the new solutions are highly sensitive to the approximation techniques used in the numerical code which highlights their benefits for code benchmarking.


    Key Points: Analytical solutions for density‐driven flow in porous media with velocity‐dependent dispersion are missing A new semianalytical solution is developed for the Henry problem with velocity‐dependent dispersion The semianalytical solution provides physical insights into the dispersion mechanisms in the mixing zone


  • 주제어

    density‐driven flow .   velocity‐dependent dispersion .   Henry problem .   semianalytical solution .   code benchmarking.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기