본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Economic geology and the bulletin of the Society of Economic Geologists v.112 no.2, 2017년, pp.319 - 346   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Ngatamariki Geothermal System: Magmatic to Epithermal Transition in the Taupo Volcanic Zone, New Zealand

Chambefort, I. (GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand ) ; Lewis, B. (GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand ) ; Simpson, M. P. (GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand ) ; Bignall, G. (GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand ) ; Rae, A. J. (GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand ) ; Ganefianto, N. (Mighty River Power Limited, PO Box 245, Rotorua 3040, New Zealand ) ;
  • 초록  

    The Ngatamariki geothermal system is one of more than 20 high enthalpy (>225°C) geothermal systems in the Taupo Volcanic Zone, North Island, New Zealand. At shallow levels (<2 km), they are analogous to low-intermediate sulfidation state epithermal ore-forming environments. Unique to Ngatamariki is the occurrence of an intrusive complex with an associated magmatic-hydrothermal alteration halo that was intersected by deep geothermal drilling (~3 km depth) and that resembles hydrothermal alteration associated with high-intermediate sulfidation state epithermal mineralization. This paper describes the results of a study involving alteration petrography, X-ray diffraction, shortwave infrared (SWIR) reflectance spectroscopy, backscattered electron scanning electron microscopy/energy dispersive spectroscopy (BSE-SEM/EDS), plus whole-rock and trace element geochemistry to document and characterize distinct hydrothermal alteration found nowhere else in the Taupo Volcanic Zone. Two separate phases of hydrothermal activity are distinguished, old and modern, as defined by a paleosurface that is dated at 0.68 Ma, which occurs ~500 m below sea level. A composite plutonic body comprising intrusions of diorite to tonalite was encountered in three adjacent drill holes (NM4, NM8, and NM9) between 2,000 and 3,200 m below sea level (~2,300–3,500 m depth below the surface) in the northern part of the Ngatamariki system. The associated hydrothermal alteration is zoned and made up of potassic, advanced argillic, phyllic, and propylitic mineral assemblages that occur between 500 and 2,500 m below sea level. Subtle potassic alteration consisting of biotite + magnetite ± K-feldspar mantles the intrusive complex. It is crosscut by a hypogene advanced argillic alteration containing pyrophyllite ± minor andalusite ± topaz ± anhydrite ± rare aluminophosphates (AP) and fluorine-bearing minerals, but lacks alunite. The deep-formed advanced argillic alteration appears in some samples to be overprinted by phyllic alteration, made up of quartz + muscovite + pyrite. Between 500 and 1,000 m below sea level, the intense phyllic alteration is less pervasive, and the hydrothermal alteration is dominated by kaolinite, rare dickite, and localized occurrences of highly silicified rocks that resemble vuggy quartz, which is bounded at the top by the paleosurface (defined as the unconformity at the base of the overlying Whakamaru group ignimbrite). In the central and southern part of the system below the paleosurface, propylitic hydrothermal alteration consisting of chlorite + calcite + epidote ± wairakite ± actinolite (along with ± albite and ± illite) is widespread, and could equally have formed during old hydrothermal activity associated with emplacement of the intrusive complex or in the deep hot parts of the modern hydrothermal system. The mineralogy and geochemistry of advanced argillic altered rock indicates that acidic magmatic-hydrothermal fluids leached base cations, resulting in the loss of elements typically considered immobile (Al, Ti, Y, Zr, Nb, as well as rare earth elements) to form cation-depleted minerals such as pyrophyllite, andalusite, and topaz. The strongest enrichments in Au (0.6 g/t), Ag (4.6 g/t), Te, As, Sb, and Bi coincide with intense acid alteration at <250-m depth beneath the paleosurface. The results of this study reveal a complex history of intrusion and hydrothermal activity that provides a modern example of successive development (~600,000 years apart) of acid and neutral pH hydrothermal alteration assemblages, which are associated with the two end member types of epithermal mineralization.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드
  • Society of Economic Geologists_GeoScienceWorld : 저널 > 논문
  • Society of Economic Geologists : 저널

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기