본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of chromatography A v.1488, 2017년, pp.45 - 56  

How to compare separation selectivity of high-performance liquid chromatographic columns properly?

Andric, F. ; Heberger, K. ;
  • 초록  

    Comparison and selection of chromatographic columns is an important part of development as well as validation of analytical methods. Presently there is abundant number of methods for selection of the most similar and orthogonal columns, based on the application of limited number of test compounds as well as quantitative structure retention relationship models (QSRR), from among Snyder's hydrophobic-subtraction model (HSM) have been most extensively used. Chromatographic data of 67 compounds were evaluated using principal component analysis (PCA), hierarchical cluster analysis (HCA), non-parametric ranking methods as sum of ranking differences (SRD) and generalized pairwise correlation method (GPCM), both applied as a consensus driven comparison, and complemented by the comparison with one variable at a time (COVAT) approach. The aim was to compare the ability of the HSM approach and the approach based on primary retention data of test solutes (logk values) to differentiate among ten highly similar C18 columns. The ranking (clustering) pattern of chromatographic columns based on primary retention data and HSM parameters gave different results in all instances. Patterns based on retention coefficients were in accordance with expectations based on columns' physicochemical parameters, while HSM parameters provided a different clustering. Similarity indices calculated from the following dissimilarity measures: SRD, GPCM Fisher's conditional exact probability weighted (CEPW) scores; Euclidian, Manhattan, Chebyshev, and cosine distances; Pearson's, Spearman's, and Kendall's, correlation coefficients have been ranked by the consensus based SRD. Analysis of variance confirmed that the HSM model produced statistically significant increases of SRD values for the majority of similarity indices, i.e. HS transformation of original retention data yields significant loss of information, and finally results in lower performance of HSM methodology. The best similarity measures were obtained using primary retention data, and derived from Kendal's and Spearman's correlation coefficients, as well as GPCM and SRD score values. Selectivity function, Fs, originally proposed by Snyder, demonstrated moderate performance.


  • 주제어

    Chromatographic column selection .   Distance and orthogonality measures .   Hydrophobic subtraction model .   Sum of ranking differences .   Generalized pairwise correlation method .   Principal component analysis.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기