본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

International journal for numerical methods in fluids v.83 no.9, 2017년, pp.704 - 734   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Stabilized mixed three‐field formulation for a generalized incompressible Oldroyd‐B model

Kwack, JaeHyuk (Department of Civil and Environmental Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, USA ) ; Masud, Arif (Department of Civil and Environmental Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, USA ) ; Rajagopal, K. R. (Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA ) ;
  • 초록  

    Summary This paper presents a generalization of the incompressible Oldroyd‐B model based on a thermodynamic framework within which the fluid can be viewed to exist in multiple natural configurations. The response of the fluid is viewed as a combination of an elastic component and a dissipative component. The dissipative component leads to the evolution of the underlying natural configurations, while the response from the natural configuration to the current configuration is considered elastic and therefore non‐dissipative. For an incompressible fluid, it is necessary that both the elastic behavior as well as the dissipative behavior is isochoric. This is achieved by ensuring that the determinant of the stretch tensor associated with the elastic response meets the constraint that its determinant is unity. A new stabilized mixed method is developed for the velocity, pressure and the kinematic tensor fields. Analytical models for fine scale fields are derived via the solution of the fine‐scale equations facilitated by the Variational Multiscale framework that are then variationally embedded in the coarse‐scale variational equations. The resulting method inherits the attributes of the classical SUPG and GLS methods, while a significant new contribution is that the form of the stabilization tensors is explicitly derived. A family of linear and quadratic tetrahedral and hexahedral elements is developed with equal‐order interpolations for the various fields. Numerical tests are presented that validate the incompressibility of the elastic stretch tensor, show optimal L 2 convergence for the conformation tensor field, and present stable response for high Weissenberg number flows. Copyright ⓒ 2016 John Wiley & Sons, Ltd.


  • 주제어

    biofluidics .   biomechanics .   VMS: variational multiscale .   incompressible flow .   non‐Newtonian .   stabilized method.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기