본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Experimental cell research v.361 no.1, 2017년, pp.63 - 72   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

The crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1 expressions in rat glomerular mesangial cells

Huang, Kaipeng (Drug Clinical Trial Institution, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China ) ; Gao, Xiang (Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China ) ; Wei, Wentao (Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China ) ;
  • 초록  

    Abstract Oxidative stress aroused by advanced glycation-end products (AGEs) is a culprit in the pathological progression of diabetic nephropathy. Both Sirt1 and the Keap1/Nrf2/ARE anti-oxidative pathway exert crucial inhibitory effects on the development of diabetic nephropathy. Our previous study has confirmed that Sirt1 activation can inhibit the upregulation of fibronectin (FN) and transforming growth factor-β1 (TGF-β1) by promoting Keap1/Nrf2/ARE pathway in glomerular mesangial cells (GMCs) challenged with AGEs. However, the underlying mechanism needs further investigation. Here, we found that concomitant with deacetylating and reducing the ubiquitination levels of Nrf2, Sirt1 significantly enhanced the activity of Keap1/Nrf2/ARE pathway including decreasing Keap1 expression, promoting the nuclear content, ARE-binding ability, and transcriptional activity of Nrf2, augmenting the protein levels of heme oxygenase 1, a target gene of Nrf2, which eventually quenched ROS overproduction and alleviating FN and TGF-β1 accumulation in AGEs-treated GMCs. And depletion of Nrf2 blocked those renoprotective effects of Sirt1. Interestingly, Nrf2 also positively regulated Sirt1 at the protein expression and deacetylase activity levels as evidenced by tert -Butylhydroquinone and specific siRNA targeting Nrf2 to downregulate FN and TGF-β1. In conclusion, the current study basically demonstrated that the crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit the protein expressions of FN and TGF-β1 in AGEs-treated GMCs. Highlights Sirt1 deacetylated and reduced the ubiquitination level of Nrf2 in AGEs-treated GMCs. Sirt1 promoted Keap1/Nrf2/ARE pathway activation to decrease FN and TGF-β1 levels. Nrf2 also regulated Sirt1 at protein expression and deacetylase activity levels. Sirt1 and Keap1/Nrf2/ARE pathway forms a positive feedback to prevent FN and TGF-β1 expressions.


  • 주제어

    Diabetic nephropathy .   Advanced glycation-end products .   Oxidative stress .   Sirt1 .   Keap1/Nrf2/ARE pathway.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기