본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Mechanical systems and signal processing v.103, 2018년, pp.196 - 215   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece

Wan, Min (Corresponding authors at: School of Mechanical Engineering, Northwestern Polytechnical University, P.O. Box 68, Xi'an, Shaanxi 710072, China. ) ; Dang, Xue-Bin (Corresponding authors at: School of Mechanical Engineering, Northwestern Polytechnical University, P.O. Box 68, Xi'an, Shaanxi 710072, China. ) ; Zhang, Wei-Hong ; Yang, Yun ;
  • 초록  

    Abstract Light weight is the main design requirement for minimizing costs or fuel consumption in mechanical equipments, and it, together with the material removal rate (MRR) requirement, also brings an important source of chatter, which still remains as an essential phenomenon to be suppressed in the future. This paper investigates the stable cutting region optimization problems in milling of structures with low rigidity. An effective method is proposed to improve the chatter stability by attaching appropriate additional masses to the workpiece, and thorough studies are also carried out to reveal the effect of additional masses on chatter stability. An efficient method based on structural dynamic modification scheme is developed to calculate the varying dynamics of the in-process workpiece under the combined effect of additional masses and material removal during milling process. Typical characteristic of this method lies in that only one modal analysis is needed to be performed on the finite element (FE) model of the initial workpiece, and the mode shape and natural frequency of the workpiece after attaching additional masses and removing material at each tool position can be calculated without the requirement to rebuild the FE model of the in-process workpiece. Based on the proposed dynamic modification scheme, an optimization algorithm is established to obtain the optimized combination of additional masses and the suitable stable cutting region for the achievement of maximum MRR. The proposed method is verified by milling process of a set of thin-walled workpieces, and comparisons of predictions and measurements show the validity and reliability. Highlights Stable processing condition is improved by attaching additional masses. Theoretical scheme is developed to calculate the dynamics of in-process workpiece. Algorithm to determine the optimal groups of masses is theoretically formulated. Optimum stable region is obtained by developing optimization strategy. It is convenient for industry application because of no working space restriction.


  • 주제어

    Chatter stability .   In-process workpiece dynamics .   Additional masses .   Milling process .   Stable cutting region optimization.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기