본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of multivariate analysis v.162, 2017년, pp.32 - 50   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Inference for the autocovariance of a functional time series under conditional heteroscedasticity

Kokoszka, Piotr (Department of Statistics, Colorado State University, United States ); Rice, Gregory (Department of Statistics and Actuarial Science, University of Waterloo, Canada ); Shang, Han Lin (Research School of Finance, Actuarial Studies and Statistics, Australian National University, Australia );
  • 초록  

    Abstract Most methods for analyzing functional time series rely on the estimation of lagged autocovariance operators or surfaces. As in univariate time series analysis, testing whether or not such operators are zero is an important diagnostic step that is well understood when the data, or model residuals, form a strong white noise. When functional data are constructed from dense records of, for example, asset prices or returns, a weak white noise model allowing for conditional heteroscedasticity is often more realistic. Applying inferential procedures for the autocovariance based on a strong white noise to such data often leads to the erroneous conclusion that the data exhibit significant autocorrelation. We develop methods for performing inference for the lagged autocovariance operators of stationary functional time series that are valid under general conditional heteroscedasticity conditions. These include a portmanteau test to assess the cumulative significance of empirical autocovariance operators up to a user selected maximum lag, as well as methods for obtaining confidence bands for a functional version of the autocorrelation that are useful in model selection/validation. We analyze the efficacy of these methods through a simulation study, and apply them to functional time series derived from asset price data of several representative assets. In this application, we found that strong white noise tests often suggest that such series exhibit significant autocorrelation, whereas our tests, which account for functional conditional heteroscedasticity, show that these data are in fact uncorrelated in a function space.


  • 주제어

    Autocovariance .   Conditional heteroskedasticity .   Functional data.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기