본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Journal of biomedical informatics v.75 suppl., 2017년, pp.S4 - S18   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID shared tasks Track 1

Stubbs, Amber (Simmons College, School of Library and Information Science, 300 The Fenway, Boston, MA 02115, United States ) ; Filannino, Michele (University at Albany, United States ) ; Uzuner, Özlem (University at Albany, United States ) ;
  • 초록  

    Abstract The 2016 CEGS N-GRID shared tasks for clinical records contained three tracks. Track 1 focused on de-identification of a new corpus of 1000 psychiatric intake records. This track tackled de-identification in two sub-tracks: Track 1.A was a “sight unseen” task, where nine teams ran existing de-identification systems, without any modifications or training, on 600 new records in order to gauge how well systems generalize to new data. The best-performing system for this track scored an F1 of 0.799. Track 1.B was a traditional Natural Language Processing (NLP) shared task on de-identification, where 15 teams had two months to train their systems on the new data, then test it on an unannotated test set. The best-performing system from this track scored an F1 of 0.914. The scores for Track 1.A show that unmodified existing systems do not generalize well to new data without the benefit of training data. The scores for Track 1.B are slightly lower than the 2014 de-identification shared task (which was almost identical to 2016 Track 1.B), indicating that these new psychiatric records pose a more difficult challenge to NLP systems. Overall, de-identification is still not a solved problem, though it is important to the future of clinical NLP. Highlights NLP shared task with new set of 1000 de-identified psychiatric records. “Sight-unseen” task: top F1 of 0.799 using out-of-the-box system on new data. “Standard task: top F1 of 0.914 on test data after 2months of development. Hybrid systems most effective, but often missed PHI requiring world knowledge or context. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Natural language processing .   Machine learning .   Clinical records .   Shared task.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기