본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Metabolic engineering v.44, 2017년, pp.117 - 125   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae

Billingsley, John M.    (Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States   ); DeNicola, Anthony B.    (Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States   ); Barber, Joyann S.    (Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States   ); Tang, Man-Cheng    (Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States   ); Horecka, Joe    (Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States   ); Chu, Angela    (Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States   ); Garg, Neil K.    (Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States   ); Tang, Yi    (Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States  );
  • 초록  

    Abstract Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae , setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous ‘ene’-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Saccharomyces cerevisiae .   Iridoids .   Monoterpene indole alkaloids .   Old yellow enzyme.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기