본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Metabolic engineering v.44, 2017년, pp.246 - 252   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering

Kim, Jae-Eung (Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA ) ; Kim, Eui-Jin (Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA ) ; Chen, Hui (Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA ) ; Wu, Chang-Hao (Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA ) ; Adams, Michael W.W. (Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA ) ; Zhang, Y.-H. Percival (Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA ) ;
  • 초록  

    Abstract Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H 2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H 2 /L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H 2 -based mass and an electricity density of more than 3000Wh/kg of starch. Highlights An ATP-free phosphorylation of starch was designed to generate glucose 6-phosphate using five enzymes. An in vitro enzyme pathway converts all glucose units of starch to hydrogen at a theoretic yield (12 H 2 per glucose). The highest volumetric productivity achieved was 90.2mmol of H 2 /L/h. Starch is a high-density hydrogen storage compound with a gravimetric density of more than 14% H 2 -based mass.


  • 주제어

    In vitro metabolic engineering .   Starch phosphorylation .   Hydrogen production .   Hydrogen storage .   Thermophilic enzymes .   Water splitting.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기