본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Metabolic engineering v.44, 2017년, pp.337 - 347   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

A mathematical model to guide genetic engineering of photosynthetic metabolism

Perin, Giorgio    (PAR-Lab (Padua Algae Research Laboratory), Dept. of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy   ); Bernardi, Andrea    (CAPE-Lab (Computer-Aided Process Engineering Laboratory) and PAR-Lab (Padua Algae Research Laboratory), Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy   ); Bellan, Alessandra    (PAR-Lab (Padua Algae Research Laboratory), Dept. of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy   ); Bezzo, Fabrizio    (CAPE-Lab (Computer-Aided Process Engineering Laboratory) and PAR-Lab (Padua Algae Research Laboratory), Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy   ); Morosinotto, Tomas    (PAR-Lab (Padua Algae Research Laboratory), Dept. of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy  );
  • 초록  

    Abstract The optimization of algae biomass productivity in industrial cultivation systems requires genetic improvement of wild type strains isolated from nature. One of the main factors affecting algae productivity is their efficiency in converting light into chemical energy and this has been a major target of recent genetic efforts. However, photosynthetic productivity in algae cultures depends on many environmental parameters, making the identification of advantageous genotypes complex and the achievement of concrete improvements slow. In this work, we developed a mathematical model to describe the key factors influencing algae photosynthetic productivity in a photobioreactor, using experimental measurements for the WT strain of Nannochloropsis gaditana . The model was then exploited to predict the effect of potential genetic modifications on algae performances in an industrial context, showing the ability to predict the productivity of mutants with specific photosynthetic phenotypes. These results show that a quantitative model can be exploited to identify the genetic modifications with the highest impact on productivity taking into full account the complex influence of environmental conditions, efficiently guiding engineering efforts. Highlights A mathematical model to predict algae growth in a photobioreactor was developed; The model predicts effects of alterations in photosynthetic metabolism; Model predictions were validated with experimental data from mutated strains; The model can identify priority targets for genetic engineering of photosynthesis.


  • 주제어

    Photosynthesis .   Modelling .   Biomass productivity .   Photobioreactor .   Nannochloropsis.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기