본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Computer speech & language v.48, 2018년, pp.15 - 30   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Audio-visual word prominence detection from clean and noisy speech

Heckmann, Martin  
  • 초록  

    Abstract In this paper we investigate the audio-visual processing of linguistic prosody, more precisely the detection of word prominence, and examine how the additional visual information can be used to increase the robustness when acoustic background noise is present. We evaluate the detection performance for each modality individually and perform experiments using feature and decision fusion. For the latter we also consider the adaptive fusion with fusion weights adjusted to the current acoustic noise level. Our experiments are based on a corpus with 11 English speakers which contains in addition to the speech signal also videos of the speakers’ heads. From the acoustic signal we extract features which are well known to capture word prominence like loudness, fundamental frequency and durational features. The analysis of the visual signal is based on features derived from the speaker’s rigid head movements and movements of the speaker’s mouth. We capture the rigid head movements by tracking the speaker’s nose. Via a two-dimensional Discrete Cosine Transform (DCT) calculated from the mouth region we represent the movements of the speaker’s mouth. The results show that the rigid head movements as well as movements inside the mouth region can be used to discriminate prominent from non-prominent words. The audio-only detection yields an Equal Error Rate (EER) averaged over all speakers of 13%. Based only on the visual features we obtain 20% of EER. When we combine the visual and the acoustic features we only see a small improvement compared to the audio-only detection for clean speech. To simulate background noise we added 4 different noise types at varying SNR levels to the acoustic stream. The results indicate that word prominence detection is quite robust against additional background noise. Even at a severe Signal to Noise Ratio (SNR) of − 10 dB the EER only rises to 35%. Despite this the audio-visual fusion leads to notable improvements for the detection from noisy speech. We observe relative reductions of the EER of up to 79%. Highlights Audio-visual detection of word prominence, first audio-visual processing of linguistic prosody. On dataset with 11 different speakers visual features alone, rigid head and mouth movements, yield equal error rate of approx. 20%. Comparison of feature fusion and decision fusion for audio-visual fusion. Word prominence detection with additional acoustic background noise. Audio-visual fusion yields relative reduction of Equal Error Rate for detection in noise of approx. 80%.


 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기