본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Computer speech & language v.48, 2018년, pp.51 - 66   SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Predicting speech intelligibility with deep neural networks

Spille, Constantin (Corresponding authors. ) ; Ewert, Stephan D. (Corresponding authors. ) ; Kollmeier, Birger ; Meyer, Bernd T. ;
  • 초록  

    Abstract An accurate objective prediction of human speech intelligibility is of interest for many applications such as the evaluation of signal processing algorithms. To predict the speech recognition threshold (SRT) of normal-hearing listeners, an automatic speech recognition (ASR) system is employed that uses a deep neural network (DNN) to convert the acoustic input into phoneme predictions, which are subsequently decoded into word transcripts. ASR results are obtained with and compared to data presented in Schubotz et al. (2016), which comprises eight different additive maskers that range from speech-shaped stationary noise to a single-talker interferer and responses from eight normal-hearing subjects. The task for listeners and ASR is to identify noisy words from a German matrix sentence test in monaural conditions. Two ASR training schemes typically used in applications are considered: (A) matched training, which uses the same noise type for training and testing and (B) multi-condition training, which covers all eight maskers. For both training schemes, ASR-based predictions outperform established measures such as the extended speech intelligibility index (ESII), the multi-resolution speech envelope power spectrum model (mr-sEPSM) and others. This result is obtained with a speaker-independent model that compares the word labels of the utterance with the ASR transcript, which does not require separate noise and speech signals. The best predictions are obtained for multi-condition training with amplitude modulation features, which implies that the noise type has been seen during training. Predictions and measurements are analyzed by comparing speech recognition thresholds and individual psychometric functions to the DNN-based results. Highlights An automatic speech recognizer using deep neural networks is proposed as model to predict speech intelligibility (SI). The DNN-based model predicts SI in normal-hearing listeners more accurately than four established SI models. In contrast to baseline models, the proposed model predicts intelligibility from the noisy speech signal and does not require separated noise and speech input. A relevance propagation algorithm shows that DNNs can listen in the dips in modulated maskers. Graphical abstract [DISPLAY OMISSION]


  • 주제어

    Speech intelligibility prediction .   Deep neural networks .   Automatic speech recognition.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기