본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Cognitive psychology v.99, 2017년, pp.44 - 79   SCIE SSCI
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Compositional inductive biases in function learning

Schulz, Eric (Harvard University, United States ) ; Tenenbaum, Joshua B. (Massachusetts Institute of Technology, United States ) ; Duvenaud, David (University of Toronto, Canada ) ; Speekenbrink, Maarten (University College London, United Kingdom ) ; Gershman, Samuel J. (Harvard University, United States ) ;
  • 초록  

    Abstract How do people recognize and learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is achieved by harnessing compositionality: complex structure is decomposed into simpler building blocks. We formalize this idea within the framework of Bayesian regression using a grammar over Gaussian process kernels, and compare this approach with other structure learning approaches. Participants consistently chose compositional (over non-compositional) extrapolations and interpolations of functions. Experiments designed to elicit priors over functional patterns revealed an inductive bias for compositional structure. Compositional functions were perceived as subjectively more predictable than non-compositional functions, and exhibited other signatures of predictability, such as enhanced memorability and reduced numerosity. Taken together, these results support the view that the human intuitive theory of functions is inherently compositional. Highlights This paper investigates how people recognize and learn about complex functional structure. We formalize this idea within the framework of Bayesian regression using a grammar over Gaussian process kernels. Our model provides a good account of participants’ completion, learning, perception, and memorization of functional structure paradigms Our results support the view that the human intuitive theory of functions is inherently compositional.


  • 주제어

    Function learning .   Pattern recognition .   Compositionality .   Structure search .   Gaussian process.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기