본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Theoretical population biology v.118, 2017년, pp.46 - 49   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Commentary: Fisher's infinitesimal model: A story for the ages

Turelli, Michael
  • 초록  

    Abstract Mendel (1866) suggested that if many heritable “factors” contribute to a trait, near-continuous variation could result. Fisher (1918) clarified the connection between Mendelian inheritance and continuous trait variation by assuming many loci, each with small effect, and by informally invoking the central limit theorem. Barton et al. (2017) rigorously analyze the approach to a multivariate Gaussian distribution of the genetic effects for descendants of parents who may be related. This commentary distinguishes three nested approximations, referred to as “infinitesimal genetics,” “Gaussian descendants” and “Gaussian population,” each plausibly called “the infinitesimal model.” The first and most basic is Fisher’s “infinitesimal” approximation of the underlying genetics – namely, many loci, each making a small contribution to the total variance. As Barton et al. (2017) show, in the limit as the number of loci increases (with enough additivity), the distribution of genotypic values for descendants approaches a multivariate Gaussian, whose variance–covariance structure depends only on the relatedness, not the phenotypes, of the parents (or whether their population experiences selection or other processes such as mutation and migration). Barton et al. (2017) call this rigorously defensible “Gaussian descendants” approximation “the infinitesimal model.” However, it is widely assumed that Fisher’s genetic assumptions yield another Gaussian approximation, in which the distribution of breeding values in a population follows a Gaussian — even if the population is subject to non-Gaussian selection. This third “Gaussian population” approximation, is also described as the “infinitesimal model.” Unlike the “Gaussian descendants” approximation, this third approximation cannot be rigorously justified, except in a weak-selection limit, even for a purely additive model. Nevertheless, it underlies the two most widely used descriptions of selection-induced changes in trait means and genetic variances, the “breeder’s equation” and the “Bulmer effect.” Future generations may understand why the “infinitesimal model” provides such useful approximations in the face of epistasis, linkage, linkage disequilibrium and strong selection.


  • 주제어

    Polygenic traits .   Gaussian approximations .   Selection response .   Additive effects .   Epistasis .   Linkage disequilibria.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.
유료다운로드

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기