본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Annals of nuclear energy v.113, 2018년, pp.105 - 117   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

Fault detection, identification and reconstruction of sensors in nuclear power plant with optimized PCA method

Li, Wei (College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China ) ; Peng, Minjun (College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China ) ; Liu, Yongkuo (College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China ) ; Jiang, Nan (College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China ) ; Wang, Hang (College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China ) ; Duan, Zhiyong (Nuclear Power Institute of China (NPIC), Chengdu 610000, China ) ;
  • 초록  

    Abstract Principal component analysis (PCA) is applied for fault detection, identification and reconstruction of sensors in a nuclear power plant (NPP) in this paper. Various methods are combined with PCA method to optimize the model performance. During data preparing, singular points and random fluctuations in the raw data are preprocessed with different methods. During model developing, several criteria are proposed to select the modeling parameters for a PCA model. During fault detecting and identifying, a statistics-based method is applied to reduce the false alarms of T 2 and Q statistics, and abnormal behavior is analyzed in principal and residual spaces simultaneously to locate the faulty sensor. During data reconstructing, reconstruction effects are evaluated between different methods. Finally, sensor measurements from a real NPP are acquired to evaluate the optimized PCA method. Simulations with normal measurements show that false alarms are greatly reduced, that is, the accuracy and reliability of the PCA model are greatly improved with data preprocessing and false alarm reducing methods. Meanwhile simulations with drift measurements show that the optimized PCA model is fully capable of detecting, identifying and reconstructing the faulty sensors no matter with small or major failures. Highlights Various techniques are combined with PCA method for sensor condition monitoring. Multiple methods are used to preprocess the sensor measurements from a real NPP. Various modeling parameter selection criteria are proposed to develop a PCA model. A statistics-based method is applied to reduce the false alarms of T 2 and Q statistics. The data reconstruction effects of faulty sensors are compared with various methods.


  • 주제어

    Data preprocessing .   False alarm reducing .   Reconstruction .   Sensors .   PCA.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기