본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Information sciences v.428, 2018년, pp.62 - 75   SCI SCIE
본 등재정보는 저널의 등재정보를 참고하여 보여주는 베타서비스로 정확한 논문의 등재여부는 등재기관에 확인하시기 바랍니다.

An eigenvector based center selection for fast training scheme of RBFNN

Hu, Yanxing (Corresponding author. ) ; You, Jane Jia ; Liu, James N.K. ; He, Tiantian ;
  • 초록  

    Abstract The Radial Basis Function Neural Network (RBFNN) model is one of the most popular Feedforward Neural Network architectures. Calculating the proper RBF centers efficiently is one of the key problems in the configuration of an RBFNN model. In previous studies, clustering approaches, especially the k -means clustering, are most frequently employed to obtain the RBF centers. However, these approaches are usually time-consuming, particularly for the data sets with a relatively large scale. Meanwhile, some approaches have been proposed to save the training time by sacrificing the accuracy. This paper introduces an approach to quickly determine the RBF centers for an RBFNN model. An eigenvector based clustering method is employed to calculate the RBF centers in the input feature space. RBF centers for the RBFNN model thus can be determined very quickly by calculating the principal components of the data matrix instead of the iterative calculation process of k -means clustering. After that, the connecting weights of the network can be easily obtained via either pseudo-inverse solution or the gradient descent algorithm. To evaluate the proposed approach, the performance of RBFNNs trained via different training schemes is compared in the experiments. It shows that the proposed method greatly reduces the training time of an RBFNN while allowing the RBFNN to attain a comparable accuracy result.


  • 주제어

    RBFNN .   Eigenvectors .   Center selection.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기