본문 바로가기
HOME> 논문 > 논문 검색상세

논문 상세정보

Demonstratio mathematica v.48 no.3, 2015년, pp.379 - 390  

Decay Rates of The Solution to the Cauchy Problem of the Type III Timoshenko Model Without Any Mechanical Damping

Said-Houari, Belkacem
  • 초록

    Abstract In this paper, we study the asymptotic behavior of the solutions of the one-dimensional Cauchy problem in Timoshenko system with thermal effect. The heat conduction is given by the type III theory of Green and Naghdi. We prove that the dissipation induced by the heat conduction alone is strong enough to stabilize the system, but with slow decay rate. To show our result, we transform our system into a first order system and, applying the energy method in the Fourier space, we establish some pointwise estimates of the Fourier image of the solution. Using those pointwise estimates, we prove the decay estimates of the solution and show that those decay estimates are very slow and, in the case of nonequal wave speeds, are of regularity-loss type. This paper solves the open problem stated in [10] and shows that the stability of the solution holds without any additional mechanical damping term.


  • 주제어

    decay rate .   heat conduction .   type III heat conduction .   regularity loss.  

 활용도 분석

  • 상세보기

    amChart 영역
  • 원문보기

    amChart 영역

원문보기

무료다운로드
유료다운로드
  • 원문이 없습니다.

유료 다운로드의 경우 해당 사이트의 정책에 따라 신규 회원가입, 로그인, 유료 구매 등이 필요할 수 있습니다. 해당 사이트에서 발생하는 귀하의 모든 정보활동은 NDSL의 서비스 정책과 무관합니다.

원문복사신청을 하시면, 일부 해외 인쇄학술지의 경우 외국학술지지원센터(FRIC)에서
무료 원문복사 서비스를 제공합니다.

NDSL에서는 해당 원문을 복사서비스하고 있습니다. 위의 원문복사신청 또는 장바구니 담기를 통하여 원문복사서비스 이용이 가능합니다.

이 논문과 함께 출판된 논문 + 더보기